# Solution: Approximate the shortest distance of tower C to the highway

Points A and B 1000 m apart are plotted on a straight highway running East and West. From A, the bearing of a tower C is 32° W of N and from B the bearing of C is 26° N of E. Approximate the shortest distance of tower C to the highway.

#### Problem Statement: ECE Board April 1998

Points A and B 1000 m apart are plotted on a straight highway running East and West. From A, the bearing of a tower C is 32° W of N and from B the bearing of C is 26° N of E. Approximate the shortest distance of tower C to the highway.
• A. 364 m
• B. 374 m
• C. 384 m
• D. 394 m

The shortest distance of tower C to the highway is 374 m

Solution:

### Latest Problem Solving in Plane Trigonometry Problems

More Questions in: Plane Trigonometry Problems

#### Search! Type it and Hit Enter

 We educate thousands of students a week in preparation for their licensure examinations. We provide professionals with materials for their lectures and practice exams. To help us go forward with the same spirit, contribution from your side will highly appreciated. Thank you in advance. Option 1 : \$5 USD Option 2 : \$10 USD Option 3 : \$15 USD Option 4 : \$20 USD Option 5 : \$25 USD Option 6 : \$50 USD Option 7 : \$100 USD Option 8 : Other Amount